Cihangir TEZCAN

Department of Cryptography Institute of Applied Mathematics Middle East Technical University

June 1, 2010

Attack Type	Probability of the incident for a wrong key	probability of the incident for the correct key	Note
Statistical Attacks (Differential, Truncated,)	р	<i>p</i> ₀	$p_0 > p$

	Probability of the	probability of the	
Attack Type	incident for	incident for	Note
	a wrong key	the correct key	
Statistical Attacks	р	p_0	$p_0 > p$
(Differential, Truncated,)			
Impossible Differential	р	0	-

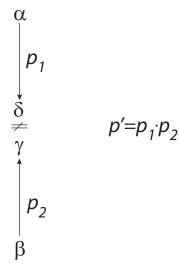
	Probability of the	probability of the	
Attack Type	incident for	incident for	Note
	a wrong key	the correct key	
Statistical Attacks	р	<i>p</i> ₀	$p_0 > p$
(Differential, Truncated,)			
Impossible Differential	р	0	-
Improbable Differential	р	p_0	$p_0 < p$

1.2. Improbable Differentials

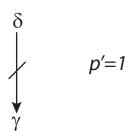
• Obtain a differential so that a pair having α input difference does not have β output difference with probability p'.

1.2. Improbable Differentials

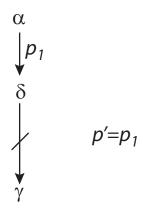
- Obtain a differential so that a pair having α input difference **does not** have β output difference with probability p'.
- Assume that α and β differences are observed with probability p for a wrong key.

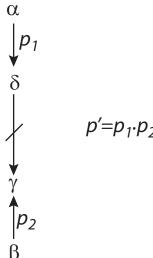

1.2. Improbable Differentials

- Obtain a differential so that a pair having α input difference **does not** have β output difference with probability p'.
- Assume that α and β differences are observed with probability p for a wrong key.
- Hence for the correct key, probability of observing these differences becomes $p_0 = p \cdot (1 p')$.


1.2. Improbable Differentials

- Obtain a differential so that a pair having α input difference **does not** have β output difference with probability p'.
- Assume that α and β differences are observed with probability p for a wrong key.
- Hence for the correct key, probability of observing these differences becomes $p_0 = p \cdot (1 p')$.


1.3. Almost Miss-in-the-Middle Technique


1.4. Improbable Differentials from Impossible Differentials

1.4. Improbable Differentials from Impossible Differentials

1.4. Improbable Differentials from Impossible Differentials

1.5. Conclusion

Dear Sir/Madam,

You are cordially invited to apply improbable differential attack to your favorite block cipher or hash function.

Sincerely yours, Cihangir Tezcan