Adam O'Neill Chris Peikert

Georgia Institute of Technology

Eurocrypt 2010 Rump Session

What We Want

1 Bob gets Alice's intended message, but ...

What We Want

1 Bob gets Alice's intended message, but ...

What We Want

1 Bob gets Alice's intended message, but ...

2 Fake coins & keys 'look as if' another message was encrypted!

Applications of Deniability

1 <u>Anti-coercion</u>: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

Applications of Deniability

 Anti-coercion: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

2 Voting: can reveal any candidate, so can't 'sell' vote (?)

Applications of Deniability

 <u>Anti-coercion</u>: 'off the record' communication (journalists, lawyers, whistle-blowers), 1984

2 Voting: can reveal any candidate, so can't 'sell' vote (?)

3 Secure protocols tolerating adaptive break-ins [CFGN'96]

State of the Art

Theory [CanettiDworkNaorOstrovsky'97]

- Sender-deniable encryption scheme (under many standard assumps)
- Receiver-deniability by adding interaction & switching roles
- Bi-deniability by interaction w/ 3rd parties (one must remain uncoerced)

State of the Art

Theory [CanettiDworkNaorOstrovsky'97]

- Sender-deniable encryption scheme (under many standard assumps)
- Receiver-deniability by adding interaction & switching roles
- Bi-deniability by interaction w/ 3rd parties (one must remain uncoerced)

Practice: TrueCrypt, Rubberhose, ...

Limited deniability: "move along, no message here..."

Plausible for *storage*, but not so much for *communication*.

This Work

1 Bi-deniable encryption: sender & receiver *simultaneously* coercible

This Work

- 1 Bi-deniable encryption: sender & receiver *simultaneously* coercible
 - * A true public-key scheme: non-interactive, no 3rd parties
 - Uses special properties of lattice-based TDFs and IBE [GPV'08]
 - Has large keys ... but this is inherent [Nielsen'02]

This Work

- 1 Bi-deniable encryption: sender & receiver *simultaneously* coercible
 - ★ A true public-key scheme: non-interactive, no 3rd parties
 - Uses special properties of lattice-based TDFs and IBE [GPV'08]
 - Has large keys ... but this is inherent [Nielsen'02]
- 2 "Plan-ahead" bi-deniability with short keys
 - Bounded number of alternative messages, decided in advance

Main Idea in a Nutshell

1 In the GPV'08 IBE, each ID has many possible secret keys sk_{ID} . Some (rare) sk_{ID} 's cause incorrect decryption — obliviously.

Main Idea in a Nutshell

1 In the GPV'08 IBE, each ID has many possible secret keys sk_{ID} . Some (rare) sk_{ID} 's cause incorrect decryption — obliviously.

Given *msk* and any ciphertext *c* encrypted to ID,
 can generate a 'fake' *sk*^{*}_{ID} that decrypts *c* to a random bit.

Main Idea in a Nutshell

1 In the GPV'08 IBE, each ID has many possible secret keys sk_{ID} . Some (rare) sk_{ID} 's cause incorrect decryption — obliviously.

- Q Given *msk* and any ciphertext *c* encrypted to ID,
 can generate a 'fake' *sk*^{*}_{ID} that decrypts *c* to a random bit.
- **3** The 'fake' $sk_{ID}^* \approx_c$ 'true' sk_{ID} .

(New analysis techniques here.)