
What Price a Provably Secure Cipher?

Bo-Yin Yang

Institute of Information Sciences
Academia Sinica
Taipei, Taiwan

byyang@iis.sinica.edu.tw

June 1, 2010, Eurocrypt



The Provably-secure QUAD(q, n, r) Stream Cipher

Proposed by Berbain, Gilbert, and Patarin in Eurocrypt 2006

Pi ’s, Qj ’s: randomly chosen, public quadratic polynomials

State: n-tuple x = (x1, x2, . . . , xn) ∈ Fn
q

Output: r -tuple (P1(x),P2(x), . . . ,Pr (x))
Update: x← (Q1(x),Q2(x), . . . ,Qn(x))

x0 //

��

x1 = Q(x0) //

��

x2 = Q(x1) //

��

x3 = Q(x2) //

��

· · ·

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · ·



Security of QUAD

Main security theorem of QUAD

Breaking QUAD implies the capability to solve n + r random
quadratic equations in n variables

Generic MQ (Multivariate Quadratics) is NP-hard

MQ(q, n, n + r) = solve for n variables from n + r quadratic
equations, all coefficients and variables in Fq

All known algorithms have average time complexity 2an+o(n)

for r/n = constant

Most also require exponential space



Key Observation

The same reduction carries over to polynomials of arbitrary
degrees, e.g., cubics, quartics, . . . , without any modifications

So long as linear terms are dense to keep the same distribution
under random linear forms
But polynomials with higher degrees have way too many
coefficients to be practical!

Need to use sparse polynomials
Need a new security assumption



SMP(q, d , n,m, (η2, . . . , ηd))

An instance S in SMP(q, d , n,m, (η2, . . . , ηd)), the class of
sparse multivariate polynomials, comprises

m polynomials (P1(x),P2(x), · · · ,Pm(x)) in n variables
x = (x1, x2, . . . , xn)
Each Pi is a degree-d polynomial with exactly ηj = ηj(n)
nonzero degree-j terms for each 2 ≤ j ≤ d
The affine terms are random

Obviously SMP contains MQ
Furthermore, solving SMP systems with reasonably many
terms appears to be hard

Ample empirical evidence to support this conjecture



SPELT, Generalization of QUAD

x0 //

��

x1 = Q(x0) //

��

x2 = Q(x1) //

��

x3 = Q(x2) //

��

· · ·

y0 = P(x0) y1 = P(x1) y2 = P(x2) y3 = P(x3) · · ·

1 P,Q drawn from SMP
2 Need to select good parameters, say for q = 16, n = r

For cubics, need n = 144 at least
For quartics, need n = 108 at least
Don’t need too many terms

10 cubic terms per equation already makes things hard



Timing on 3 GHz Intel CPU

Stream cipher Cycles/byte Throughput Security

AES (Bernstein and Schwabe) 9.2 2.61 Gbps ≤ 2?

SPELT(16, 4, 32, 32, (10, 8, 5)) 1244 19.3 Mbps ≤ 2152

QUAD(2, 160, 160) (BBG SAC 2006) 2081 11.5 Mbps ≤ 2140

SPELT(16, 4, 108, 108, (20, 15, 10)) 5541 4.3 Mbps ≥ 280

SPELT(2, 3, 208, 208, (480, 20)) 11744 2.0 Mbps ≥ 282

QUAD(2, 320, 320) (BBG SAC 2006) 13646 1.8 Mbps ≥ 282



Latest Development

We learned how to launch better brute-force attacks

O(2n) rather than O(2n+o(n))
Bad news for QUAD/SPELT because this means more
variables and slower speed

We learned how to program GPU

Can we make QUAD/SPELT usable in practice?



Preliminary Performance Results

Stream cipher Cycles/byte
Throughput

C2Q 9550 GPU

AES (BS; OBSC, FSE 2010) 9.2 2.61 Gbps 30.9 Gbps

SPELT(64, 4, 32, 32, (10, 8, 5)) 1244 19.3 Mbps
QUAD(2, 160, 160) (BBG SAC 2006) 2081 11.5 Mbps

SPELT(16, 4, 108, 108, (20, 15, 10)) 5541 4.3 Mbps
SPELT(2, 3, 208, 208, (480, 20)) 11744 2.0 Mbps
QUAD(2, 320, 320) (BBG SAC 2006) 13646 1.8 Mbps

SPELT(31, 4, 96, 96, (32, 16, 8)) 549 43.7 Mbps 914 Mbps

SPELT(16, 4, 96, 96, (32, 16, 8)) 573 41.9 Mbps 784 Mbps

SPELT(2, 3, 224, 224, (448, 20)) 3121 7.3 Mbps 826 Mbps

QUAD(2, 320, 320) 3701 6.1 Mbps 2.6 Mbps



Concluding Remarks

In the case of stream cipher, the cheapest price for provable
security seems to be one or two orders of magnitude in terms
of speed



Acknowledgement

This is a joint work with

Tien-Ren Chen
Chun-Hung Hsiao
Ruben Niederhagen
Ming-Shing Chen
Chen-Mou Cheng, National Taiwan University


