The Equivalence of Strong RSA and Factoring in the Generic Ring Model of Computation

Divesh Aggarwal and Ueli Maurer and Igor Shparlinski

EUROCRYPT 2010

Rump Session

The Strong RSA Problem:

Given n = pq, $x \in_R \mathbb{Z}_n$, compute y, e s.t. $y^e = x \mod n$.

The Strong RSA Problem:

Given
$$n = pq$$
, $x \in_R \mathbb{Z}_n$, compute y , e s.t.
 $y^e = x \mod n$.

Strong RSA Assumption: The Strong RSA Problem is hard.

The Strong RSA Problem:

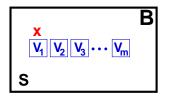
Given
$$n = pq$$
, $x \in_R \mathbb{Z}_n$, compute y , e s.t.
 $y^e = x \mod n$.

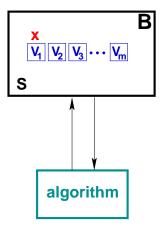
Strong RSA Assumption: The Strong RSA Problem is hard.

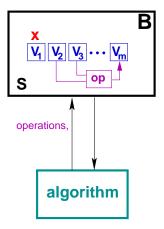
Factor $n \implies$ Solve Strong RSA

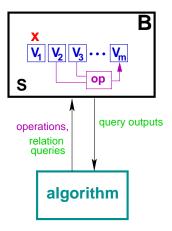
 $x^{\phi(n)+1} = x \mod n.$

The Strong RSA Problem:

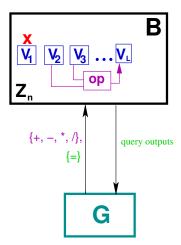

Given
$$n = pq$$
, $x \in_R \mathbb{Z}_n$, compute y , e s.t.
 $y^e = x \mod n$.

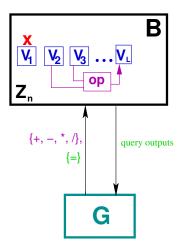

Strong RSA Assumption: The Strong RSA Problem is hard.


Factor $n \implies$ Solve Strong RSA

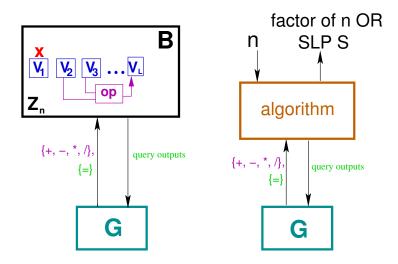

 $x^{\phi(n)+1} = x \mod n.$

Solve Strong RSA $\stackrel{?}{\Longrightarrow}$ Factor *n*

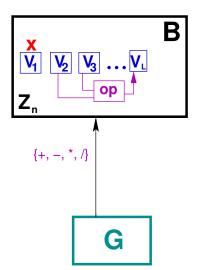




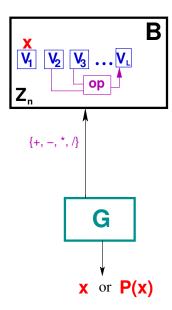
For the ring \mathbb{Z}_n

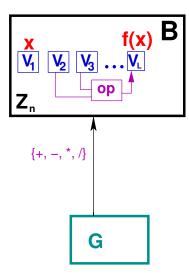

For the ring \mathbb{Z}_n , we have from [AM09]...

For any problem \mathcal{P} that *G* solves..

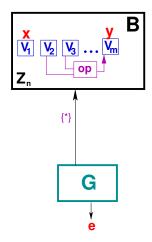


For the ring \mathbb{Z}_n , we have from [AM09]...

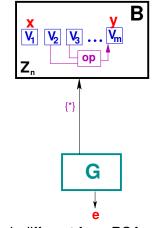

For any problem \mathcal{P} that G solves..


Thus assuming factoring n is hard, we can restrict attention to Straight Line Programs

Extraction/Decision Problems Uninteresting

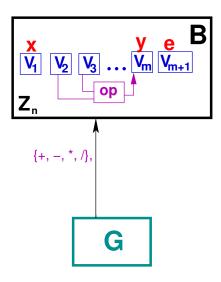


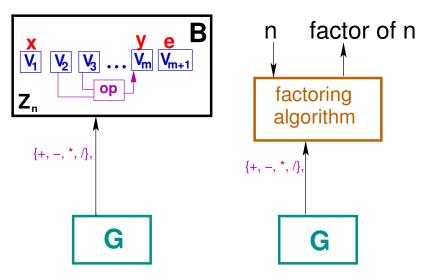
Computation Problems More Interesting


Earlier Attempt at Strong RSA in the Generic Model [DK02]

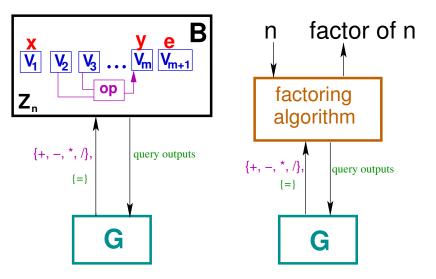
Strong RSA: Given x, find y, e such that $y^e = x \mod n$

Earlier Attempt at Strong RSA in the Generic Model [DK02]


Strong RSA: Given x, find y, e such that $y^e = x \mod n$


Not much different from RSA

How to model Strong RSA in the generic model?


Here is how!

Our Result

Our Result

